If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3k2 + -26k + 15 = 0 Reorder the terms: 15 + -26k + 3k2 = 0 Solving 15 + -26k + 3k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 5 + -8.666666667k + k2 = 0 Move the constant term to the right: Add '-5' to each side of the equation. 5 + -8.666666667k + -5 + k2 = 0 + -5 Reorder the terms: 5 + -5 + -8.666666667k + k2 = 0 + -5 Combine like terms: 5 + -5 = 0 0 + -8.666666667k + k2 = 0 + -5 -8.666666667k + k2 = 0 + -5 Combine like terms: 0 + -5 = -5 -8.666666667k + k2 = -5 The k term is -8.666666667k. Take half its coefficient (-4.333333334). Square it (18.77777778) and add it to both sides. Add '18.77777778' to each side of the equation. -8.666666667k + 18.77777778 + k2 = -5 + 18.77777778 Reorder the terms: 18.77777778 + -8.666666667k + k2 = -5 + 18.77777778 Combine like terms: -5 + 18.77777778 = 13.77777778 18.77777778 + -8.666666667k + k2 = 13.77777778 Factor a perfect square on the left side: (k + -4.333333334)(k + -4.333333334) = 13.77777778 Calculate the square root of the right side: 3.711842909 Break this problem into two subproblems by setting (k + -4.333333334) equal to 3.711842909 and -3.711842909.Subproblem 1
k + -4.333333334 = 3.711842909 Simplifying k + -4.333333334 = 3.711842909 Reorder the terms: -4.333333334 + k = 3.711842909 Solving -4.333333334 + k = 3.711842909 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '4.333333334' to each side of the equation. -4.333333334 + 4.333333334 + k = 3.711842909 + 4.333333334 Combine like terms: -4.333333334 + 4.333333334 = 0.000000000 0.000000000 + k = 3.711842909 + 4.333333334 k = 3.711842909 + 4.333333334 Combine like terms: 3.711842909 + 4.333333334 = 8.045176243 k = 8.045176243 Simplifying k = 8.045176243Subproblem 2
k + -4.333333334 = -3.711842909 Simplifying k + -4.333333334 = -3.711842909 Reorder the terms: -4.333333334 + k = -3.711842909 Solving -4.333333334 + k = -3.711842909 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '4.333333334' to each side of the equation. -4.333333334 + 4.333333334 + k = -3.711842909 + 4.333333334 Combine like terms: -4.333333334 + 4.333333334 = 0.000000000 0.000000000 + k = -3.711842909 + 4.333333334 k = -3.711842909 + 4.333333334 Combine like terms: -3.711842909 + 4.333333334 = 0.621490425 k = 0.621490425 Simplifying k = 0.621490425Solution
The solution to the problem is based on the solutions from the subproblems. k = {8.045176243, 0.621490425}
| (x1/5)^3 | | 3(0)-2x=12 | | 15f^2+37f=18 | | -26=2(y-4)+7y | | 8(1+2)=40 | | 6(X-2)=17 | | 3x^2+4x-4=2x^2+13x+18 | | 5.72*41= | | -12(x-4)=3(4-4x) | | 0.36•11/2 | | (x+4)(x-5)=180 | | -2+3x=-2(x+1) | | 3xysquare= | | -4z(-5z-10)=4(-2z-9) | | 1x-0.09=2.22 | | Tan^2x+3tanx+1=0 | | 9=6(x+7)-x | | x^2=-5x-12 | | 2x=5/11 | | 2p+15=3p+5 | | n+1.1=23.3 | | 150.9=2.95h+71.25 | | 6x-3(x+2)=3(x-2)-3(2x-3) | | -1/9(x-27 | | 49x^2+9-42x=0 | | k/k^.25 | | (2x+7)-4=24 | | 15=2-2x | | -(v+u)+6(-6u-v)= | | -1/8t9= | | 135+20y-5x=180 | | -26=-8+3w |