3k^2-26k+15=0

Simple and best practice solution for 3k^2-26k+15=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2-26k+15=0 equation:


Simplifying
3k2 + -26k + 15 = 0

Reorder the terms:
15 + -26k + 3k2 = 0

Solving
15 + -26k + 3k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
5 + -8.666666667k + k2 = 0

Move the constant term to the right:

Add '-5' to each side of the equation.
5 + -8.666666667k + -5 + k2 = 0 + -5

Reorder the terms:
5 + -5 + -8.666666667k + k2 = 0 + -5

Combine like terms: 5 + -5 = 0
0 + -8.666666667k + k2 = 0 + -5
-8.666666667k + k2 = 0 + -5

Combine like terms: 0 + -5 = -5
-8.666666667k + k2 = -5

The k term is -8.666666667k.  Take half its coefficient (-4.333333334).
Square it (18.77777778) and add it to both sides.

Add '18.77777778' to each side of the equation.
-8.666666667k + 18.77777778 + k2 = -5 + 18.77777778

Reorder the terms:
18.77777778 + -8.666666667k + k2 = -5 + 18.77777778

Combine like terms: -5 + 18.77777778 = 13.77777778
18.77777778 + -8.666666667k + k2 = 13.77777778

Factor a perfect square on the left side:
(k + -4.333333334)(k + -4.333333334) = 13.77777778

Calculate the square root of the right side: 3.711842909

Break this problem into two subproblems by setting 
(k + -4.333333334) equal to 3.711842909 and -3.711842909.

Subproblem 1

k + -4.333333334 = 3.711842909 Simplifying k + -4.333333334 = 3.711842909 Reorder the terms: -4.333333334 + k = 3.711842909 Solving -4.333333334 + k = 3.711842909 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '4.333333334' to each side of the equation. -4.333333334 + 4.333333334 + k = 3.711842909 + 4.333333334 Combine like terms: -4.333333334 + 4.333333334 = 0.000000000 0.000000000 + k = 3.711842909 + 4.333333334 k = 3.711842909 + 4.333333334 Combine like terms: 3.711842909 + 4.333333334 = 8.045176243 k = 8.045176243 Simplifying k = 8.045176243

Subproblem 2

k + -4.333333334 = -3.711842909 Simplifying k + -4.333333334 = -3.711842909 Reorder the terms: -4.333333334 + k = -3.711842909 Solving -4.333333334 + k = -3.711842909 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '4.333333334' to each side of the equation. -4.333333334 + 4.333333334 + k = -3.711842909 + 4.333333334 Combine like terms: -4.333333334 + 4.333333334 = 0.000000000 0.000000000 + k = -3.711842909 + 4.333333334 k = -3.711842909 + 4.333333334 Combine like terms: -3.711842909 + 4.333333334 = 0.621490425 k = 0.621490425 Simplifying k = 0.621490425

Solution

The solution to the problem is based on the solutions from the subproblems. k = {8.045176243, 0.621490425}

See similar equations:

| (x1/5)^3 | | 3(0)-2x=12 | | 15f^2+37f=18 | | -26=2(y-4)+7y | | 8(1+2)=40 | | 6(X-2)=17 | | 3x^2+4x-4=2x^2+13x+18 | | 5.72*41= | | -12(x-4)=3(4-4x) | | 0.36•11/2 | | (x+4)(x-5)=180 | | -2+3x=-2(x+1) | | 3xysquare= | | -4z(-5z-10)=4(-2z-9) | | 1x-0.09=2.22 | | Tan^2x+3tanx+1=0 | | 9=6(x+7)-x | | x^2=-5x-12 | | 2x=5/11 | | 2p+15=3p+5 | | n+1.1=23.3 | | 150.9=2.95h+71.25 | | 6x-3(x+2)=3(x-2)-3(2x-3) | | -1/9(x-27 | | 49x^2+9-42x=0 | | k/k^.25 | | (2x+7)-4=24 | | 15=2-2x | | -(v+u)+6(-6u-v)= | | -1/8t9= | | 135+20y-5x=180 | | -26=-8+3w |

Equations solver categories